\(\int \frac {(d+e x^2)^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx\) [221]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 41, antiderivative size = 108 \[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{c \sqrt {e}}-\frac {\sqrt {2 c d-b e} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {2 c d-b e} x}{\sqrt {c d-b e} \sqrt {d+e x^2}}\right )}{c \sqrt {e} \sqrt {c d-b e}} \]

[Out]

arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/c/e^(1/2)-arctanh(x*e^(1/2)*(-b*e+2*c*d)^(1/2)/(-b*e+c*d)^(1/2)/(e*x^2+d)^(
1/2))*(-b*e+2*c*d)^(1/2)/c/e^(1/2)/(-b*e+c*d)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {1163, 399, 223, 212, 385, 214} \[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{c \sqrt {e}}-\frac {\sqrt {2 c d-b e} \text {arctanh}\left (\frac {\sqrt {e} x \sqrt {2 c d-b e}}{\sqrt {d+e x^2} \sqrt {c d-b e}}\right )}{c \sqrt {e} \sqrt {c d-b e}} \]

[In]

Int[(d + e*x^2)^(3/2)/(-(c*d^2) + b*d*e + b*e^2*x^2 + c*e^2*x^4),x]

[Out]

ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/(c*Sqrt[e]) - (Sqrt[2*c*d - b*e]*ArcTanh[(Sqrt[e]*Sqrt[2*c*d - b*e]*x)/(S
qrt[c*d - b*e]*Sqrt[d + e*x^2])])/(c*Sqrt[e]*Sqrt[c*d - b*e])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 399

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Dist[b/d, Int[(a + b*x^n)^(p - 1), x]
, x] - Dist[(b*c - a*d)/d, Int[(a + b*x^n)^(p - 1)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c
 - a*d, 0] && EqQ[n*(p - 1) + 1, 0] && IntegerQ[n]

Rule 1163

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[(d + e*x^2)^(p +
q)*(a/d + (c/e)*x^2)^p, x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2
, 0] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sqrt {d+e x^2}}{\frac {-c d^2+b d e}{d}+c e x^2} \, dx \\ & = \frac {\int \frac {1}{\sqrt {d+e x^2}} \, dx}{c}-\frac {\left (-c d e+\frac {e \left (-c d^2+b d e\right )}{d}\right ) \int \frac {1}{\sqrt {d+e x^2} \left (\frac {-c d^2+b d e}{d}+c e x^2\right )} \, dx}{c e} \\ & = \frac {\text {Subst}\left (\int \frac {1}{1-e x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{c}-\frac {\left (-c d e+\frac {e \left (-c d^2+b d e\right )}{d}\right ) \text {Subst}\left (\int \frac {1}{\frac {-c d^2+b d e}{d}-\left (-c d e+\frac {e \left (-c d^2+b d e\right )}{d}\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{c e} \\ & = \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{c \sqrt {e}}-\frac {\sqrt {2 c d-b e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {2 c d-b e} x}{\sqrt {c d-b e} \sqrt {d+e x^2}}\right )}{c \sqrt {e} \sqrt {c d-b e}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.29 \[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=-\frac {\sqrt {2 c^2 d^2-3 b c d e+b^2 e^2} \text {arctanh}\left (\frac {-b e+c \left (d-e x^2+\sqrt {e} x \sqrt {d+e x^2}\right )}{\sqrt {2 c^2 d^2-3 b c d e+b^2 e^2}}\right )+(c d-b e) \log \left (-\sqrt {e} x+\sqrt {d+e x^2}\right )}{c \sqrt {e} (c d-b e)} \]

[In]

Integrate[(d + e*x^2)^(3/2)/(-(c*d^2) + b*d*e + b*e^2*x^2 + c*e^2*x^4),x]

[Out]

-((Sqrt[2*c^2*d^2 - 3*b*c*d*e + b^2*e^2]*ArcTanh[(-(b*e) + c*(d - e*x^2 + Sqrt[e]*x*Sqrt[d + e*x^2]))/Sqrt[2*c
^2*d^2 - 3*b*c*d*e + b^2*e^2]] + (c*d - b*e)*Log[-(Sqrt[e]*x) + Sqrt[d + e*x^2]])/(c*Sqrt[e]*(c*d - b*e)))

Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.93

method result size
pseudoelliptic \(-\frac {\frac {\left (b e -2 c d \right ) \operatorname {arctanh}\left (\frac {\left (b e -c d \right ) \sqrt {e \,x^{2}+d}}{x \sqrt {e \left (b e -2 c d \right ) \left (b e -c d \right )}}\right )}{\sqrt {e \left (b e -2 c d \right ) \left (b e -c d \right )}}-\frac {\operatorname {arctanh}\left (\frac {\sqrt {e \,x^{2}+d}}{x \sqrt {e}}\right )}{\sqrt {e}}}{c}\) \(100\)
default \(\text {Expression too large to display}\) \(2436\)

[In]

int((e*x^2+d)^(3/2)/(c*e^2*x^4+b*e^2*x^2+b*d*e-c*d^2),x,method=_RETURNVERBOSE)

[Out]

-1/c*((b*e-2*c*d)*arctanh((b*e-c*d)*(e*x^2+d)^(1/2)/x/(e*(b*e-2*c*d)*(b*e-c*d))^(1/2))/(e*(b*e-2*c*d)*(b*e-c*d
))^(1/2)-1/e^(1/2)*arctanh((e*x^2+d)^(1/2)/x/e^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 940, normalized size of antiderivative = 8.70 \[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=\left [\frac {e \sqrt {\frac {2 \, c d - b e}{c d e - b e^{2}}} \log \left (\frac {c^{2} d^{4} - 2 \, b c d^{3} e + b^{2} d^{2} e^{2} + {\left (17 \, c^{2} d^{2} e^{2} - 24 \, b c d e^{3} + 8 \, b^{2} e^{4}\right )} x^{4} + 2 \, {\left (7 \, c^{2} d^{3} e - 11 \, b c d^{2} e^{2} + 4 \, b^{2} d e^{3}\right )} x^{2} - 4 \, {\left ({\left (3 \, c^{2} d^{2} e^{2} - 5 \, b c d e^{3} + 2 \, b^{2} e^{4}\right )} x^{3} + {\left (c^{2} d^{3} e - 2 \, b c d^{2} e^{2} + b^{2} d e^{3}\right )} x\right )} \sqrt {e x^{2} + d} \sqrt {\frac {2 \, c d - b e}{c d e - b e^{2}}}}{c^{2} e^{2} x^{4} + c^{2} d^{2} - 2 \, b c d e + b^{2} e^{2} - 2 \, {\left (c^{2} d e - b c e^{2}\right )} x^{2}}\right ) + 2 \, \sqrt {e} \log \left (-2 \, e x^{2} - 2 \, \sqrt {e x^{2} + d} \sqrt {e} x - d\right )}{4 \, c e}, \frac {e \sqrt {\frac {2 \, c d - b e}{c d e - b e^{2}}} \log \left (\frac {c^{2} d^{4} - 2 \, b c d^{3} e + b^{2} d^{2} e^{2} + {\left (17 \, c^{2} d^{2} e^{2} - 24 \, b c d e^{3} + 8 \, b^{2} e^{4}\right )} x^{4} + 2 \, {\left (7 \, c^{2} d^{3} e - 11 \, b c d^{2} e^{2} + 4 \, b^{2} d e^{3}\right )} x^{2} - 4 \, {\left ({\left (3 \, c^{2} d^{2} e^{2} - 5 \, b c d e^{3} + 2 \, b^{2} e^{4}\right )} x^{3} + {\left (c^{2} d^{3} e - 2 \, b c d^{2} e^{2} + b^{2} d e^{3}\right )} x\right )} \sqrt {e x^{2} + d} \sqrt {\frac {2 \, c d - b e}{c d e - b e^{2}}}}{c^{2} e^{2} x^{4} + c^{2} d^{2} - 2 \, b c d e + b^{2} e^{2} - 2 \, {\left (c^{2} d e - b c e^{2}\right )} x^{2}}\right ) - 4 \, \sqrt {-e} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{4 \, c e}, \frac {e \sqrt {-\frac {2 \, c d - b e}{c d e - b e^{2}}} \arctan \left (\frac {{\left (c d^{2} - b d e + {\left (3 \, c d e - 2 \, b e^{2}\right )} x^{2}\right )} \sqrt {e x^{2} + d} \sqrt {-\frac {2 \, c d - b e}{c d e - b e^{2}}}}{2 \, {\left ({\left (2 \, c d e - b e^{2}\right )} x^{3} + {\left (2 \, c d^{2} - b d e\right )} x\right )}}\right ) + \sqrt {e} \log \left (-2 \, e x^{2} - 2 \, \sqrt {e x^{2} + d} \sqrt {e} x - d\right )}{2 \, c e}, \frac {e \sqrt {-\frac {2 \, c d - b e}{c d e - b e^{2}}} \arctan \left (\frac {{\left (c d^{2} - b d e + {\left (3 \, c d e - 2 \, b e^{2}\right )} x^{2}\right )} \sqrt {e x^{2} + d} \sqrt {-\frac {2 \, c d - b e}{c d e - b e^{2}}}}{2 \, {\left ({\left (2 \, c d e - b e^{2}\right )} x^{3} + {\left (2 \, c d^{2} - b d e\right )} x\right )}}\right ) - 2 \, \sqrt {-e} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{2 \, c e}\right ] \]

[In]

integrate((e*x^2+d)^(3/2)/(c*e^2*x^4+b*e^2*x^2+b*d*e-c*d^2),x, algorithm="fricas")

[Out]

[1/4*(e*sqrt((2*c*d - b*e)/(c*d*e - b*e^2))*log((c^2*d^4 - 2*b*c*d^3*e + b^2*d^2*e^2 + (17*c^2*d^2*e^2 - 24*b*
c*d*e^3 + 8*b^2*e^4)*x^4 + 2*(7*c^2*d^3*e - 11*b*c*d^2*e^2 + 4*b^2*d*e^3)*x^2 - 4*((3*c^2*d^2*e^2 - 5*b*c*d*e^
3 + 2*b^2*e^4)*x^3 + (c^2*d^3*e - 2*b*c*d^2*e^2 + b^2*d*e^3)*x)*sqrt(e*x^2 + d)*sqrt((2*c*d - b*e)/(c*d*e - b*
e^2)))/(c^2*e^2*x^4 + c^2*d^2 - 2*b*c*d*e + b^2*e^2 - 2*(c^2*d*e - b*c*e^2)*x^2)) + 2*sqrt(e)*log(-2*e*x^2 - 2
*sqrt(e*x^2 + d)*sqrt(e)*x - d))/(c*e), 1/4*(e*sqrt((2*c*d - b*e)/(c*d*e - b*e^2))*log((c^2*d^4 - 2*b*c*d^3*e
+ b^2*d^2*e^2 + (17*c^2*d^2*e^2 - 24*b*c*d*e^3 + 8*b^2*e^4)*x^4 + 2*(7*c^2*d^3*e - 11*b*c*d^2*e^2 + 4*b^2*d*e^
3)*x^2 - 4*((3*c^2*d^2*e^2 - 5*b*c*d*e^3 + 2*b^2*e^4)*x^3 + (c^2*d^3*e - 2*b*c*d^2*e^2 + b^2*d*e^3)*x)*sqrt(e*
x^2 + d)*sqrt((2*c*d - b*e)/(c*d*e - b*e^2)))/(c^2*e^2*x^4 + c^2*d^2 - 2*b*c*d*e + b^2*e^2 - 2*(c^2*d*e - b*c*
e^2)*x^2)) - 4*sqrt(-e)*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)))/(c*e), 1/2*(e*sqrt(-(2*c*d - b*e)/(c*d*e - b*e^2))
*arctan(1/2*(c*d^2 - b*d*e + (3*c*d*e - 2*b*e^2)*x^2)*sqrt(e*x^2 + d)*sqrt(-(2*c*d - b*e)/(c*d*e - b*e^2))/((2
*c*d*e - b*e^2)*x^3 + (2*c*d^2 - b*d*e)*x)) + sqrt(e)*log(-2*e*x^2 - 2*sqrt(e*x^2 + d)*sqrt(e)*x - d))/(c*e),
1/2*(e*sqrt(-(2*c*d - b*e)/(c*d*e - b*e^2))*arctan(1/2*(c*d^2 - b*d*e + (3*c*d*e - 2*b*e^2)*x^2)*sqrt(e*x^2 +
d)*sqrt(-(2*c*d - b*e)/(c*d*e - b*e^2))/((2*c*d*e - b*e^2)*x^3 + (2*c*d^2 - b*d*e)*x)) - 2*sqrt(-e)*arctan(sqr
t(-e)*x/sqrt(e*x^2 + d)))/(c*e)]

Sympy [F]

\[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=\int \frac {\sqrt {d + e x^{2}}}{b e - c d + c e x^{2}}\, dx \]

[In]

integrate((e*x**2+d)**(3/2)/(c*e**2*x**4+b*e**2*x**2+b*d*e-c*d**2),x)

[Out]

Integral(sqrt(d + e*x**2)/(b*e - c*d + c*e*x**2), x)

Maxima [F]

\[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {3}{2}}}{c e^{2} x^{4} + b e^{2} x^{2} - c d^{2} + b d e} \,d x } \]

[In]

integrate((e*x^2+d)^(3/2)/(c*e^2*x^4+b*e^2*x^2+b*d*e-c*d^2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^(3/2)/(c*e^2*x^4 + b*e^2*x^2 - c*d^2 + b*d*e), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((e*x^2+d)^(3/2)/(c*e^2*x^4+b*e^2*x^2+b*d*e-c*d^2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^{3/2}}{-c d^2+b d e+b e^2 x^2+c e^2 x^4} \, dx=\int \frac {{\left (e\,x^2+d\right )}^{3/2}}{-c\,d^2+b\,d\,e+c\,e^2\,x^4+b\,e^2\,x^2} \,d x \]

[In]

int((d + e*x^2)^(3/2)/(b*e^2*x^2 - c*d^2 + c*e^2*x^4 + b*d*e),x)

[Out]

int((d + e*x^2)^(3/2)/(b*e^2*x^2 - c*d^2 + c*e^2*x^4 + b*d*e), x)